
Advanced Dynamic Programming Technique

1 Bitmasks in DP
Consider the following example: suppose there are several balls of various values. Each ball may be
one of three different colours: red, green, and blue. You want to package the balls together such that
each package contains exactly three balls, one of each colour. The value of a package is defined to
be the sum of the values of the three balls and you want to find the maximum value of the package
possible. The state can be defined by the tuple (which ball we are currently considering, what colours
are already present in the package). The recurrence relation essentially decide whether we will add
the current ball we are considering. How exactly do we encode which colours are already present in
the package? Bitmask of course! Code as follows:

i n t memo [ 1 2 8 ] [ 8 ] ; / / i n i t i a l i z e d t o −1

i n t max va lue ( i n t cur , i n t b i t m a s k ) {
/ / base case
i f ( b i t m a s k == 7) re turn 0 ;
i f ( c u r >= n u m b a l l s ) re turn −INF ;
i f (memo[ c u r ] [ b i t m a s k ] != −1) re turn memo[ c u r ] [ b i t m a s k ] ;

/ / don ’ t add t h e c u r r e n t b a l l t o t h e package
i n t ans = max va lue ( c u r + 1 , b i t m a s k )
i f ( ( ( 1 << c o l o u r [ c u r ] ) & b i t m a s k ) == 0) {

/ / t r y add ing t h e c u r r e n t b a l l t o t h e package
i n t temp = v a l u e [ c u r ] +

max va lue ( c u r + 1 , b i t m a s k | (1 << c o l o u r [ c u r ] ) ) ;
ans = max ( ans , temp ) ;

}
re turn memo[ c u r ] [ b i t m a s k ] = ans ;

}

2 Iterative vs Recursive DP
In general, there are two ways to implement a DP algorithm. So far, all of the examples presented is
recursive (hence recursive DP). This is because once we have found the state and recurrence relation,
coding up a recursive implementation is a straightforward process. While this is easy, there are a
few drawbacks of recursive DP. First, recursion involves pushing and popping stack frames for each
function call and so is slower. Secondly, one must be careful about the depth of recursive calls. The
DP algorithm may be sound, but if it involves making 100,000 recursive calls, you can be sure that
the program will crash due to stack overflow.

Iterative DP, as the name implies, involves no recursion. Instead, we simply fill in the correct
answer for each state ”in the right order”. What we mean by the ”right order” is that when you are



trying to find the answer for a state, all the other states that the current state depends on are already
filled in. This is best illustrated by an example. Consider the coin changing problem, coded iteratively:

i n t memo [ 1 2 8 ] ;

/ / f i n d t h e minimum number o f c o i n s needed t o make N
i n t m i n c o i n ( i n t N) {

/ / base case
memo [ 0 ] = 0 ;

/ / f i l l i n memo a r r a y
f o r ( i n t i = 1 ; i <= N; ++ i ) {

memo[ i ] = INF ;
f o r ( i n t j = 0 ; j < num denomina t ions ; ++ j ) {

i f ( d e n o m i n a t i o n [ j ] <= i )
memo[ i ] = min (memo[ i ] , memo[ i − d e n o m i n a t i o n [ j ] ) ;

}
}
re turn memo[N ] ;

}

In the above example, we noted that the recurrence relation for n depended on state whose value
is less than n. So if we fill in the answer in increasing order, we will be guaranteed that the states we
depend on has already been filled in.

3 Circular Recurrence Relation
When we first introduce DP, we noted that circular recurrence relation is a BIG no no. However, this
does not mean that you should immediately discard any circular recurrence relation. In some (very
special) cases, it is possible to rearrange the recurrence relation so that it’s not circular. For example,
suppose we are given the following recurrence f(n) =

∑n
i=1 i∗ f(i). On the first look, the recurrence

relation is circular since it depends on itself. However, we can rearrange the equation:

f(n) =
n∑

i=1

i ∗ f(i)

f(n)− n ∗ f(n) =
n−1∑
i=1

i ∗ f(i)

f(n) =
1

1− n

n−1∑
i=1

i ∗ f(i)

Note that the recurrence relation is no longer circular. For the given example, it is simple to see
that we can rearrange the recurrence. However, other recurrence may not be so obvious. So it’s a
good idea to keep this in mind when you are designing a DP algorithm.



4 Reducing the State Space
Sometimes, you have this really nice DP idea that will run in time. However, the state space is too
large so the algorithm is infeasible. Again, in very special cases, all might not be lost! Consider
the following variant of the coin changing problem: suppose you only have a K types of coins and
you want to make change for the amount N . For coin type i, the denomination is denom[i] and
the number of coins you have is coin[i]. A DP algorithm defines the state using the tuple (n, i),
specifying the least number of coins required to make amount n using only the first i coins (or INF
if impossible). The recurrence relation is easy to see and here’s the pseudocode for the recursive
implementation:

i n t memo [ 1 2 8 ] [ 1 2 8 ] ; / / i n i t i a l i z e d t o −1

i n t m i n c o i n ( i n t n , i n t i ) {
i f ( n == 0) re turn 0 ;
i f ( i >= K) re turn INF ;
i f (memo[ n ] [ i ] != −1) re turn memo[ n ] [ i ] ;

i n t ans = INF ;
f o r ( i n t j = 0 ; j < c o i n [ i ] && j ∗ denom [ i ] <= n ; ++ j ) {

ans = min ( ans , j + m i n c o i n ( n − j ∗denom [ i ] , i +1)
}
re turn memo[ n ] [ i ] = ans ;

}

First, let’s note that we can code this iteratively:

i n t m i n c o i n ( i n t N) {
memset (memo , 0 x 3 f 3 f 3 f 3 f , s i z e o f (memo ) ) ;

f o r ( i n t i = 0 ; i < K; ++ i ) {
memo [ 0 ] [ i ] = 0 ;
f o r ( i n t j = 0 ; j < c o i n [ i ] ; ++ j ) {

i n t amt = j ∗ denom [ i ] ;
f o r ( i n t n = amt ; n <= N; ++n ) {

memo[ n ] [ i ] = min (memo[ n ] [ i ] , j + memo[ n−amt ] [ i −1 ] ) ;
}

}
}
re turn memo[N] [ K−1];

}

Note that in the above code, memo[n][i] only depends on the values memo[*][i-1]. So is
there a point keeping track of memo[*][i-2]? Of course not! In fact, we can reduce the second
dimension of the memo array! Instead, we will keep overwriting the same array (in a ”smart way”) so
that we don’t overwrite informations we may need later. In this case, the trick is to iterate n backward
from N to coin[i]. This reduces the state space from O(N ∗K) to O(N).



i n t m i n c o i n ( i n t N) {
memset (memo , 0 x 3 f 3 f 3 f 3 f , s i z e o f (memo ) ) ;
memo [ 0 ] = 0 ;

f o r ( i n t i = 0 ; i < K; ++ i ) {
f o r ( i n t j = 0 ; j < c o i n [ i ] ; ++ j ) {

i n t amt = j ∗ denom [ i ] ;
f o r ( i n t n = N; n >= amt ; −−n )

memo[ n ] = min (memo[ n ] , j +memo[ n−amt ) ) ;
}

}
re turn memo[N ] ;

}


